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Abstract

When studying structural vibrations resulting from a concentrated
source, many structures may be modelled as a finite beam excited by a point
source. This research explores the theoretical limit on cancelling the
resulting beam vibrations by utilizing another point source as an active
controller. Three different types of excitation are considered, harmonic,
random, and transient. In each case, a cost function is defined and
minimized for numerous parameter variations.

For the case of harmonic excitation, the cost function is obtained by
integrating the mean squared displacement over a region of the beam in
which control is desired. A controller is then found to minimize this cost
function in the control interval. The control interval and controller location
are continuously varied for several frequencies of excitation. The results
show that control over the entire beam length is possible only when the
excitation frequency is near a resonant frequency of the beam, but control
over a subregion may be obtained even between resonant frequencies at the
cost of increasing the vibration outside of the control region.

For random excitation, the cost function is realized by integrating the
expected value of the displacement squared over the interval of the beam in
which control is desired. This is shown to yield the identical cost function as
obtained by integrating the cost function for harmonic excitation over all
excitation frequencies.. As a result, it is always possible to reduce the cost
function for random excitation whether controlling the entire beam or just a
subregion, without ever increasing the vibration outside the region in which

control is desired.



The last type of excitation considered is a single, transient pulse. A cost
function representative of the beam vibration is obtained by integrating the
transient displacement squared over a region of the beam and over all time.
The form of the controller is chosen a priori as either one or two delayed
pulses. Delays constrain the controller to be causal. The best possible
control is then examined while varying the region of control and the
controller location. It is found that control is always possible using either one
or two control pulses. The two pulse controller gives better performance than
a single pulse controller, but the effort to find the optimal delay time for each
additional controller pulse increases as the square of the number of control

pulses.
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Chapter 1
INTRODUCTION

With our increasing involvement in the area of aerospace technologies,
the need to control large, flexible aerospace structures such as aircraft, space
stations, radio telescopes, or solar energy panels grows more important.
Unwanted vibrations in these structures may result in poor instrument
performance, noisy interiors, or even structural failure.

Traditional methods for controlling unwanted vibrations in a structure
used passive isolators or stiffened the structure such that it became more
difficult to excite. Passive isolators are useful only over a small frequency
band because they are tuned for a single frequency. Isolators also give poor
performance at low frequencies. Adding stiffness to the structure results in
increased weight. The design of aerospace vehicles is extremely sensitive to
weight.

A novel approach to control, made possible by advances in the digital
computer, is active control. This method utilizes additional sources of
disturbance to cancel out the undesired disturbance. Suppressing vibration
in resonating structures by active control techniques is receiving extensive
study’™. The plausibility of actively controlling a structure modelled as a
linear system has been confirmed”®. Very often, the structure to be controlled
may be modelled as a‘beam. It may be desired to control the flow of energy
through the beam or the vibration of the beam itself depending on the

application. In an infinite or semi-infinite domain, the flow of energy in the



beam is the quantity to be controlled. For a finite domain, controlling the
vibration of the beam itself becomes the problem. This thesis is concerned
with controlling the vibration of a finite beam.

If the beam is connecting some mechanical device to a supporting
structure, vibrations propagate through the beam into the structure. This is
a situation in which it is suitable to control the flow of energy through the
beam in an effort to isolate it from the structure without concern for the
vibration of the beam itself. It has been demonstrated that this flexural
power flow in beams modelled as infinite or semi-infinite can be attenuated
with a small number of actuators®*%.

For finite systems, control is desired over some spatial region. Balas"
describes a method for applying active control to distributed structures and
demonstrates the method with an example for a simply-supported beam. The
equation of motion for an undamped beam in bending is solved by the method
of eigenfunctions. This information is incorporated in a linear control
system, in which information from a sensor is used to estimate the modal
amplitudes and velocities. Thé steady-state controller produces control
proportional to the modal amplitudes by minimizing a performance function
via a single actuator. The first three modes of the system after control are
found to be positively damped for the case of a transient excitation.
Meirovitch and Baruh' also control a simply-supported beam using a concept
referred to as Independent Modal-Space Control (IMSC). In this method, the
modes of the beam aré controlled independently, so that one is effectively
controlling a set of independent second-order systems in parallel. This allows
for a relatively simple design and quick implementation for real time control.

The drawback to IMSC is that an actuator is necessary for each mode to be



controlled, and in some cases, the number of these can be quite large. The
large number of actuators makes the control system more expensive and may
cause design conflicts arising from positioning the actuators. Meirovitch and
Silverberg'® demonstrate an application of IMSC by modeling an aircraft
wing as a cantilever beam and controlling the flutter modes excited by a
constant velocity airflow.

All of the studies described above in the area of beam control use some
scheme to observe the motion of the beam which allows the actuator to
implement the appropriate control. The sensor provides feedback to the
actuator so that the vibrating beam is controlled without regard to the input
disturbance and the actuator continues to damp out the vibrations in the
beam after the source of disturbance has been discontinued. This thesis is
concerned with the best theoretical control possible, assuming complete
knowledge of the beam’s mechanics a priori via the beam equation, and does
not require any scheme to estimate the state of the system. Since the

‘eigenvalues and eigenvectors of the beam are assumed to be known, the only
additional knowledge that is needed for establishing optimal control of the
beam is any restrictions on the controller and the input excitation.

Three different cases of input excitation from a point source on the beam
are considered, and the resulting vibration is controlled by a second point
source linearly related to the excitation source. It is this linear relation,
hereaﬁér referred to as the controller, that is sought such as to give the best
control possible. |

First the excitation is assumed to be steady-state sinusoidal. A measure
of control is defined by integrating the mean square displacement over some

length of the beam. The controller that best minimizes this quantity is then



found and its performance demonstrated. The best controller is acausal but
because the excitation is sinusoidal and therefore completely predictable
under steady-state conditions, causality is not a constraint for this controller.
It is referred to as the unconstrained harmonic controller.

For the second case the beam excitation is assumed to be a stationary,
white-noise random process. The cost function minimized for this case is
obtained by integrating the expected value of the displacement squared over
some length of the beam. The controller that best minimizes this quantity is
then found and its performance demonstrated. This controller is referred to
as the unconstrained random controller.

The last type of excitation controlled is not a steady-state excitation as
in the case of the previous controllers sought, but a single, transient impulse.
The form of the controller is chosen a priori as either one or two delayed,
independent impulses. The delay time and weight of the control pulses are
chosen such as to minimize the squared displacement response integrated
over time and some beam length:

When the best controllers have been found for the previously mentioned
types of excitation, the results are compared for different configurations. The
controller location and the interval of control are varied as well the frequency

in the harmonic case.



Chapter 2

SOLUTION TO BEAM EQUATION

f

e

Figure 1. Simply supported beam, excited by a point source

In this chapter, the equations governing the vibration of a beam are
developed. The following chapters will use this theory when adding a control
force to minimize the vibration in the beam. Since the beam equation is
linear, only one point force need be used in developing the equations of
motion. Additional point forces are handled by superposition of solutions.

Given the simply supported, Bernoulli-Euler'® beam in Figure 1, the

governing equation for small, transverse vibrations is

Fyxp) . dyxb
e +EI=23

= f(x,t) (hH

with 0<x </ and 0 <t. The bending stiffness is EI, rfi the linear mass density,

and f(x,t) the distributed force loading. It is convenient to nondimensionalize
equation (1) by utilizing the following dimensionless variables for space and

time:



x=>  and t=w}-’—’1t (1.1)
! mit

Now equation (1) becomes

8’y(x,t)+3“.v(x,t)
or? ox*

= f(x.1) (1.2)

where0<x<1,0<t and f(x,t)is a nondimensional loading force given by
f(x,t)=—lif(x,t) (1.3)
El
For the point force shown in Figure 1, and throughout this thesis
f(x,t) = £(£)8(x,). The simply supported beam is subject to the following
boundary conditions:

y(©,0)=y(1.0)=0 (2)

Fy(0,0) _Fy(,1) _
onr ot

0 (3)

Equation (2) fixes the ends of the beam while equation (3) ensures that the
ends of the beam are free to rotate by requiring zero applied moment.
The homogeneous equation of (1.2) can be solved to find the natural

vibration frequencies and associated beam modes or eigenfunctions'”:
w,=(nn’ n=123,.. (4)
¢,(x) =sinnnx n=123,... (5)

The particular or "forced” solution can be obtained using the method of

eigenfunctions. Assume an expansion of the displacement in the form

yn= I 4,60 ®)



where the generalized coordinate y,(¢) for the nth beam mode is to be

determined. Substituting equation (6) into (1) and using the orthogonality of
the beam modes results in the following second-order uncoupled equations

after adding a modal viscous damping term {, :

d’y,(¢) dy (),
Pl ey 0= 20,(x)f.(1) (12)

Adding the damping at this point may seem unconventional, but it is a
common step in the structural field'®. Putting a damping term in equation (1)
would only serve to complicate finding the eigenvalues for the beam. A small
damping term is included here to prevent an infinite response of the beam at
resonance. In practice the actual modal damping value {, is almost always
determined experimentally®.

Equation (12) can be solved to give
70)=20,05) [ den, @ -9 (13
0

where 1 o .
h,(t)y= e sin ®, ¢t u(t) (14)

d,n
and md,n = (')n\/l"—t}- (15)
The function 4,(¢) is the impulse response of the nth beam mode and u,(¢) is

the Heaviside function. Now with equations (6) and (13) the general solution
for the steady-state beam displacement can be written as a convolution

between the exciting force and the impulse response of the beam:

y(x,t)=J‘”d1:h,(x,t)j§(t—1) (17)



where

B D=2 T B (00,6)0,(0) (18)
The impulse response function 4,(x,7) is by definition the response of the

beam at position x due to an impulsive force at position x, at time t=0.

For the case of harmonic excitation, let the force be represented by
£y =R{F,e™} (19)

where £, is in general complex and R denotes the real part of a complex

quantity. In harmonic analysis the system is assumed to be in its

steady-state. In the steady-state, all quantities are oscillating at the same

frequency ©, so all have representations similar to the exciting force in

equation (19). For simplicity, only the complex amplitudes (indicated by a

hat) will be utilized in the analysis, and it is understood that the physical

quantities are found by multiplying by ¢’ and taking the real part.
Substitute equation (19) into (17) to give ‘

Yy, £) = der h (e, DR )

Now it can be seen that
F(x, ) = H,(x, 0)f, (20)

where H (o) is the Fourier transform!® of the impulse response of the beam.

The Fourier transform pair is defined by

H(m):f"d:h(z)e""" (21.1)

1 (> 4
h(t)=£f doH(w)e’” - (21.2)

Fourier transforming equation (18) and (14) gives



H,(6,0) =2 T 4,()6,(0H, () @)

where 1
H(@)=—————F (23)
o - o + 2jon,l,

Equation (22) gives the transfer function between the displacement of
any point on the beam and the exciting force. Figure 2 shows this transfer
function for the displacement at x = 1/6 due to an exciting force at x, = 1/6 for
the first 3 modes. The damping was taken to be 1%. The response of the
modes is well separated and very peaked since the damping is small. The
phase shift of n radians below and above the resonance frequencies is
expected. Note the phase change of = between the first and second modes.
This phase change marks the frequency at which the displacement of the
beam due to the response of the second mode dominates the displacement due
to the first mode.

The closed form solution to the beam equation found in this chapter will
be used throughout the remaining analysis in this thesis. It is worthwhile to
point out, though, that the remaining analysis is not only applicable to a
simply supported finite beam. The eigenfunctions and eigenvalues of more
complicated systems can be found numerically by computer programs such as
NASTRAN, and utilized in the same manner as those of the beam found in
this chapter.
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Chapter 3

CONTROLLING HARMONIC EXCITATION

fs(t)

y f®

] h (t) I
L

Xg X

x=0 X=1

Figure 3. Controller configuration for harmonic excitation

In this chapter the force exciting the beam is assumed to be harmonic
with an rms amplitude of unity. A second force is applied to control the
steady-state vibrations of the beam. The arrangement of the'exciting and
controlling forces is shown in figure 3. The primary source of excitation is
represented by f,(t) and the secondary force, used for controlling the beam, by
f.(¢). The linear relation between the exciting and controlling forces defines

the controller. In the time domain this linear relation is written
£ = [ ashpe- (24)

where h(t) is the impulse response of the controller.

For harmonic excitation, the convolution in equation (24) becomes

f.=H(wf, (25)

where H(w) is the Fourier transform' of the controller impulse response h(r).

11



The displacement of the beam due to a harmonic point source was found
in Chapter 2. Invoking superposition, the displacement due to both the

exciting force and the controlling force is

y(x, ) = H,(x, 0)f, + H(x, 0, (26)

where H,(60)=2 T 0,)0,(0H,(©)
H (0 ®)=2 3 4,600,00H,(®) @n
and H @)= 28

o — 0’ +2jow,i,
Using equation (25), equation (26) can be rewritten as
$(x, @) = {H,(x, ) + H(@H (x, o)}, 29

Combining equation (27) and (29) gives the harmonic equivalent of equation

(6):

§00,0) = T 0,(05,(®) @9.1
where J @) = £.{6,(x) + H(@),(x )} () (29.2)

Note that equation (29) reveals that a controller can be found such that
the displacement is equal to zero at any single point x on the beam. This
controller is given by

H, (x,®)

H®) =7 0

(30)

For harmonic excitation, the vibration of the beam will be represented
by the mean square displacement. Integrating the mean square
displacement over some length of the beam results in a cost function to be

minimized. Define

12



2 -
tbaf dx y*(x,t) (3D

where the bar denotes a time average. The controller that minimizes this
functional is the cohtroller that reduces the mean square displacement,
integrated over the specified length of the beam, to the smallest value
possible with the given beam configuration. This point is stressed because, in
some cases, this may not be the quantity that is desired to be minimized, and
if not, the appropriate quantity should be defined.

Since squaring is not a linear operation, the real part of the complex

displacement must be taken before squaring:

Y, ) =R Y0, @) [ /) (32)
where 6(x, ®) is the phase angle of y(x,®w). Now take the real part and square
it to give

yz(x,t) =| y(x, ) |2 cosz[(ot +0(x, ®)]

‘which can be split into a constant and an oscillating part by the trigonometric

double angle formula, resulting in
yz(x,t)=%|)?(x,0)) [ {1 +cos[2w¢ +26(x, w)]} (34)

Taking the time average of equation (34) and substituting it into
equation (31) gives

1 (™
d(w) =§J dx| y(x,w) [’ (35)

Equation (29) can now be substituted into equation (35), giving the functional

to be minimized in terms of the sought controller function H(w):

13



2
f

«D(w):f dx | H,(x, )+ H(@H,(x, ) | - (35.1)

Notice that | £, | /2 is the rms amplitude of the sinusoidal excitation which has
been assumed to be unity so equation (35.1) can be written
(o) = f dx | H (x,0)+H@H.(x,0) [ (36)

Equation (36) can be expanded in the form

D(w) = B,(0) + B (0)H (o) + B, (w)H “(@)+By(0) | H@) [ (37
where x
B,(w)= f dx|H(x,®)

B,(@)= f dx H (x, o)H. (x, )

B (w)= f dx |H (x,w) (38)

Equation (37) cannot be minimized by taking the derivative with respect
to H (o) and setting it equal to zero because the derivative is not defined for
complex conjugation. However, the derivative with respect to the real and
imaginary parts of H(w) is defined. Let

H(®)=R(w)+jI(®) 39
where R(w) and /(w) are the real and imaginary parts of H(w) respectively.
Substituting equation (39) into (37) results in

D(w) = B () + B, () {R (@) + jI(@)} +By(®) {R(w) - jI(0)} +By(0) {R o)+ ()}
(39.9)

Now take the partial derivative with respect to R(w) and /(w):

14



a0

R =B, +B,+2B.R(w)
%‘? = j(B, —B,)+ 2Bl (®) (40)

Set these derivatives equal to zero and solve for R(w) and /(). Putting the

results back into equation (39) yields the optimal controller:

B,(w)

H®)="3 @

(41)

Using this in equation (37) gives the minimum value of ®:

| By(w) I

D) = B(0) =5

(41.1)
Now use equation (38) to rewrite (41):

- | dxH,(x,0)H(x,0)

*1

H(w)= (42)

j "dx | H.(x, o) P

It may provide some insight to look at some special cases of equation

(42). It can be expanded over the modes by using equation (27):

nmlm=

H(w)= (43)

5 5 HH 0600 [ dx8,600.00)

-3 i‘H,.(O))H:.(ﬂ))%(X,)%(xC)L dx §,()000)

nwlmel
If @ is to be minimized over the length of the beam, x, =0 and x, = 1. Because

the eigenfunctions are orthogonal over this interval, equation (43) reduces to

~ 3 | Hy(®) P 0(x)0,(x.)

nw=i

H(w)= (43.1)

@0

E. | ()  ¢7(x.)
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The frequency response of the controller in equation (43.1) is real, which
implies that the impulse response of the controller is even'®. This can be seen

by writing the inverse Fourier transform
1 (= .
h(t)= ——J’ H o 432
) o _‘d wH(w)e ( )
and its complex conjugate,
h(t) = %: Lde‘(m)e'f“' (43.3)

Since by equation (43.1), H(®) = H (), it can now be seen from equation (43.3)

that A(¢) = h(-t). The impact of the even impulse function can be seen by
looking back to equation (24). To find the controlling force f,(¢), future values
of the excitation force f,(r) are required since h(-t) # 0. For this reason the
controller is referred to as acausal. If the future values of the excitation
cannot be predicted, an acausal controller cannot be used in a real-time
application. Obviously the future is predictable for harmonic excitation and
causality is not a constraint®.

Now that the controller that minimizes ® over the entire length of the

beam has been found, it is interesting to compare it with the controller that
minimizes ® at a single point. This controller can be found by letting the
interval of minimization approach zero, i.e. | x, - x, | 0 where the point of
interest is between x, and x,. In the limit, the integrands in equation (42) can
be treated as constant and taken outside of the integrations. This results in

H((o)=—H’(x’m)HC(x2’ )
|H.(x, )]

(44)

which simplifies to
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H(x,w)

45)
H.(x, ) (

H(w)=-

Equation (45) gives the optimal controller for minimizing the mean square
displacement at a single point on the beam. This agrees with the result of
equation (30) and from equation (29) it can be seen that the mean square
displacement at this point is zero.

Another configuration that can be evaluated analytically is that for
which the exciting and controlling force are collocated, i.e.
x, =x.=H (x,0) =H (x,w). It can be seen from equation (42) that H(w)=-1
which implies that A4(r) = -&r). Using the definition of /4(r) given in equation
(24),

£ == ardpe v =70 (46

which results in perfect control as expected when substituted back into
equation (36).

The best controller for harmonic excitation has been found and the
limiting cases of control checked. Now a digital computer will be used to
obtain limits on control for more general arrangements. Calculating the
amplitude of §(x, ) in equation (29.1) gives the envelope of the beam
displacement. This amplitude is plotted versus the non-dimensional length x
of the beam, before and after control, for several excitation frequencies in
figures 4-7. A table of modal coefficients accompanies each figure. The tables
reveal the effect of the controller on the magnitude and phase of the

individual modes. Although all results are presented without dimension, it is

17



necessary to state that the phase will be expressed in radians throughout this
thesis. Only the first three modes are considered and the coefficient of
damping &, for all modes is taken to be 1%.

In both ﬁgures‘ 4 and 5, the driving frequency is at resonance of the
second mode. In figure 4, @ is being minimized globally or over the entire
length of the beam, 0 sx <1, while in figure 5, it is being minimized locally or
over a subinterval, 3/4 Sx < 1. Because the displacement of the beam i8
dominated by the response of a single mode, minimizing the cost function ©
locally results in very nearly the same global performance as when
minimizing globally.

The contributions of the individual modes when minimizing globally are
given in table 1. Before control, the second mode clearly dominates the
displacement. Notice the phase of the individual modes before control. These
are given relative to the exciting source. The third mode has a phase lag of

~ 0 because it is being excited below resonance, the second mode has a phase

lag of = /2 because it i8 excited near resonance; the first mode has a phase

lag of = & because it is excited above resonance. After control, the phases are
unchanged. The reason for this can be revealed by examination of equation
(29.2). When minimizing ® over the length of the beam, H(w) is real (see
eqn. 43.1), so it cannot affect the phase of the nth modal coefficient, ¥, ().
Assuming a reference phase of zero for the excitation source, the phase of the

nth mocial coefficient is
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Figure 4. Envelope of beam displacement, x, = 1/6, x, = 3/4, x, =0,
n=1, 0=,
Before Control After Control
Mode n | Yn(w) ] LY (o) | Yalw) | £y ()
1 4.839E-04 | -3.136E+00 | 1.076E-03 | -3.136E+00
2 3.929E-02 | -1.571E+00 | 1.749E-05 | -1.571E+00
3 2.233E-04 -1.107E-02 3.600E-04 -1.107E-02
Table 1. Modal coefficients before and after control for figure 4.

£y (w)=£H, (w)= -tan-'{

wan?;}

o2 - o’

(46.1)

The modal phases are fixed before a controller is ever found! This explains

why the phases are unchanged after control in table 1. The amplitude of the

second mode, which is at resonance, is greatly reduced. When minimizing

locally in figure 5, the amplitude of the second mode was not as dramatically

19



reduced. This allowed slightly better control within the control interval.

When the beam was excited at resonant freque

beam displayed very similar behavior as that seen in fi

0.020

0.02¢ -
0.024 -
0.022 -
0.02
0.018 -

0.016 -

ncies of the other modes, the

gures 4 and 5.

E 0.014 \
= ooz \
0.01 - \ \
0.008 | \ |
0.008 \
0.004 - \
0.002 \
o T ‘_-T’—-'T' T T T 1
0 0.2 0.4 0.8 1
< uncontrolled
controtled
Figure 5. Envelope of beam displacement, x, = 1/6, x. =3/4, x, = 3/4,
n=10=0,
Before Control After Control
Mode n | ¥a(o)| V4 N(0) | ¥ (@) | Ly (o)
1 4.839E-04 | -3.136E+00 | 1.076E-03 -3.132E+00
2 3.929E-02 | -1.5671E+00 | 2.572E-04 -3.105E+00
3 2.233E-04 | -1.107E-02 3.600E-04 -8.591E-03
Table 2. Modal coefficients before and after control for figure 5.

Figures 6 and 7 are the same as fi

gures 4 and 5 described above except

for the driving frequency. For these cases, the driving frequency is between

the first and second natural frequencies of the beam. Minimizing ® over the
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length of the beam in figure 6 shows virtually no control at all. To
understand why this is so, use equation (29.1) to expand equation (35) over

the modes, resulting in

D(w) =% 3 il yn(m)y*;(m)f dx 6, ()0, (x) (46.2)

nalme

which simplifies to
l o
D=7 X | S (46.3)

when calculating ® over the beam length. This equation reveals that the

modal amplitudes | ¥,(®) | must be independently controlled for global
reduction of ®. The table of modal coefficients for figure 6 implies that
excellent control can be obtained if the coefficients of the first and second
modal amplitudes can be independently reduced, but this is not possible
because the controller H(w) has only one degree of freedom when minimizing
® globally (see eqn. 43.1).

Between resonances, two modes are contributing on the same order to
the total response of the beam. Therefore, controlling one mode excites the
other even more, and this spillover limits the amount of control that is
possible when minimizing globally. When minimizing locally, the controller
uses spillover to achieve better control as seen in figure 7. Notice that the
beam displacement outside the subinterval of control is much larger than
before the control was applied. Table 4 gives the contributions of the
individual modes to tﬁe displacement envelope in figure 7. The amplitudes of
all three modes are increased significantly, but the phase of the second mode
was changed so as to cancel the contributions of the first and third mode in

the interval of minimization which created a larger displacement envelope
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outside the interval of minimization. It will be seen in figure 14 that moving
the location of the controller allows better control both inside and outside of

the minimization interval.

0.0016
0.0014 :
0.0012 :
e
Y i
\x/ 0.0008 -
> i
0.00086 —
0.0004 :
0.0002 :
0 ] T T T T T T T T T
0 0.2 04 0.6 0.8 1
uncontrolied
X controlied
Figure 6. Envelope of beam displacement, x, = 1/6, x. = 3/4, x, =0,
Xy = 1, W= 2.50.)‘
Before Control After Control
Mode n | ¥u() | £y (w) | ¥u(0) | FA M)

1 1.382E-03 | -3.132E+00 | 1.120E-03 | -3.132E+00

2 1.289E-03 | -2.050E-02 1.488E-03 -2.050E-02

3 1.942E-04 | -6.019E-03 1.758E-04 | -6.019E-03

Table 3. Modal coefficients before and after control for figure 6.

Now that the beam displacement envelope has been examined for

several cases and the amount of reduction over the length of the beam seen, it

is interesting to study the reduction of @, which corresponds to the
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ly(x,w)|
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Figure 7. Envelope of beam displacement, x, = 1/6, x. = 3/4, X, =3/4
Xy, = l, 0= 2-5(’)1
Before Control After Control
Mode n [ Ya(w) | £y, (w) ' [ V()| £y, (w)
1 1.382E-03 -3.132E+00 8.614E-03 -3.061E+00
2 1.289E-03 -2.050E-02 4.226E-03 -3.052E+00
3 1.942E-04 -6.019E-03 7.019E-04 5.494E-02

Table 4. Modal coefficients before and after control for figure 7.

b

performance of the controller. Without control, it can be seen from equation

(37) that ® =B (w). After applying control, ® is given by equation (41.1).

These two quantities are compared in figures 8-13.

Figures 8 and 9 give the performance of the controller versus frequency

for minimizing over the beam length, and over a subinterval of the beam

length, respectively. Figures 4-7 become single data points on these graphs.

The largest reduction of ® is at the resonance frequencies in both figure 8 and
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9. Notice that there is a frequency between the modes at which no control is
possible. The exact frequency at which this occurs is a function of x, and x..
At this frequency there is a balance of the modal responses in the region of
control, so spillover prevents any reduction of the cost function. The location
of Figure 9 shows that a greater reduction in @ is possible when minimizing

over a subinterval of the beam length.

-10

.20 4
o~ 30 A
1]
=)
e
.40 -
o~
3
P
© 50
.80 —
70 7 \
-80 T T L T T T T 7 T 1
0 20 40 80 80 100
W ————— uncontrolled
controlled

Figure 8. Effect of frequency on reduction of global cost function @,
x,=1/6, x, =34, x, = 0, x,=1

Figures 10-13 illustrate the importance of location of the controller if
that freedom is available. All of these plots show the perfect control when the
controller is collocated with the source. The beam is being driven at the
resonant frequency of-the second mode in figures 10 and 11. Note that
insignificant global control is possible in figure 10 when the controller is
located at a node of the mode that is dominating the displacement, but figure

11 shows that local control is always possible at a resonance, no matter
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dw) @\

uncontrolled
controlled

Figure 9. Effect of frequency on reduction of local cost function @,
x,=1/6,x.=3/4,x,= 3/4, x,=1

where the controller is located.

In figures 12 and 13 the driving frequency is between the first and
second natural frequencies. If one is trying to control globally, figure 12
shows that it is best to be as close as possible to the source. When
minimizing locally, a more complex relationship results, as shown in figure
13. Interestingly enough, the best control is achieved (for separated sources),
when the controller is located at the center. At this position the controller
cannot excite the second mode and as a result avoids spillover which allows
greater freedom in altering the first and third modes, and results in much
better control. This is the location of the controller in figure 14, in which all
parameters are identical to those in figure 7, except for the controller
location. It can be noted from table 5 that the second mode is not excited by

the controller, because the amplitude and phase are unchanged. after control.
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Figure 10.  Effect of controller position x. on reduction of global cost
function @, x,=1/6, x,=0,x,=1, ®=®,
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Figure 11.  Effect of controller position x. on reduction of local cost
function @, x, = 1/6, x,=3/4, x,= 1, 0=,
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The amplitudes of the first and third modes are increased and the bhase of
the first mode is shifted by &, so that the optimal control is achieved by a

destructive interference between the modes in the region of minimization.

-50
.co —
)
S 70
—
X %]
90 -
-100
-110 T T T T T T T T T
0 0.2 04 0.8 0.8 1
Xe uncontrolled
controlled

Figure 12. Effect of controller position x, on reduction of global cost
function ®, x,=1/6, x, =0, x, =1, ®= 2.5,
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Figure 13. Effect of controller position x, on reduction of local cost
function ®, x,=1/6, x,=3/4, x,= 1, ®=2.5w,

Figures 7 and 14 illustrate control of the beam over an interval. In
figure 7 control was possible at the cost of a considerable increase in
.displacement outside of the interval of minimiz'ation. In figure 14, much
better control was shown to be possible with smaller displacements outside
the interval of minimization with the proper location of the controller. For
these same two locations of the controller, it is interesting to examine the
effect of a continuous change in the interval of minimization. Comparing the
global cost function to that obtained when minimizing locally (over a
subinterval), gives an indication of the efficiency of the controller. To do this,
fix the right side of the interval at x,=1 and let 0 <x, < 1. The ideal controller

is then found from equation (41) and ® from equation (37).
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Figure 14. Envelope of beam displacement before and after local
minimization with optimal controller placement, x, = 1/6,
X =12, x,=3/4, x,=1, =250,
Before Control After Control
Mode n | Yn(w) | £y (o) | Ya(w) | £y, (o)
1 1.382E-03 | -3.132E+00 | 1.441E-03 -2.339E-02
2 1.289E-03 -2.050E-02 1.289E-03 -2.050E-02
3 1.942E-04 | -6.019E-03 3.925E-04 | -1.451E-02

Table 5. Modal coefficients before and after control for figure 14.

Figure 15 shows almost no increase in the global cost function when the

29

interval of minimization is changed. This indicates that minimizing locally is
the same as minimizing globally. When any single mode dominates the total
response of the beam, then minimizing the response of that mode results in
both a global and local minimum. The result is much different if the exciting
source is off resonance, as can be seen in figure 16. In this case, the global

cost function ® increases dramatically to allow greater minimization in the
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Figure 15.  Effect of interval of minimization on both the global and
local value of cost function @ before and after control,

0=, x,=1/6,x =314, x,=1
interval of concern. This is a result of spillover being utilized to reduce @
locally. If the controller is located optimally, this increase in the global cost
function @, due to spillover, can be minimized as shown in figure 17. It can
be seen that with the proper location of the controller, tremendous reduction
in @ can be achieved locally without a significant increase in the global value
of ®.

In summary, the best control of harmonic excitation over the length of
the beam is achieved when the displacement is dominated by one mode. Over
the length of the beam, the modes must be independently minimized and a
single controller can dnly independently minimize a single mode. If control is
desired only over a subregion, it is possible to control all modes over this
subregion if spillover outside of the region of control is allowed. In general,

the best location for the controller is as close as possible to the exciting
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Figure 16.  Effect of interval of minimization on both the global and
local value of cost function ® before and after control,
w=2.5w,x,=1/6,x.=3/4, x,=1
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Figure 17.  Effect of interval of minimization on both the global and
local value of cost function ® before and after control with
x, optimal, ®=2.5w,, x,= /6, x. =1/2, x, =1
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source. Results similar to these presented have been seen in experimental
control of a semi-infinite beam®, which would seem to indicate that

comparable mechanisms are present for other types of boundary conditions.
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Chapter 4

CONTROLLING RANDOM EXCITATION

fa(t)

y f.(t)

h(t) *—T
X

x=0 X=1

Figure 18. Controller configuration for random excitation

In this chapter the force exciting the beam is assumed to be a random
process with a constant power spectrum and a variance of unity. This type of
random process is also referred to as white noise because of its uniform
‘frequency content. A second force is applied to control the stationary
vibrations of the beam. The arrangement of the exciting and controlliﬂg
forces is shown in figure 18. The primary source of excitation is represented
by f.(t) and the éecondary force, used for controlling the beam, by f.(+). The
linear relation between the exciting and controlling forces defines the

controller. In the time domain this linear relation is written
f.(t)= J dth(D)f(t—1) 47N

where A(¢) is the impulse response of the controller.
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The displacement of the beam due to a single exciting force is given by

equation (17). By superposition, the total displacement is
Y@, 1) = fo CdT k(T )fE - T,) +J:d1, h O, T - T,) (48)
Using equation (47), this can be written
y, = fo"drl h (T —T) + fo dr, hc(x,t,)J:d'ch(t)f,(t -7 (49)

For random excitation the vibration of the beam will be represented by
the expected value of the displacement squared. Integrating this quantity
over some length of the beam results in a cost functional to be minimized

with respect to the impulse response function of the controller. Define

‘I‘af dx o’ (x) (50)

as this cost functional where, 6%(x) is the variance of the displacement which

is identical to the expected value of the displacement squared. To find ¥ in

terms of h(r), the impulse response of the controller, first square equation (49)

Y= [ " e 1k DEC -1 -
12 [ drhe [ananh i mne e -nRe -5 -

+j-d1d1:’h(t)h ) f”‘h' dvh (x,t)h (x, L) (t -1, - (t-1,-7) (51)

and then calculate the expected value,
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0= [ “dn,dnR @ - e
2 f:drhmfo"dr, dT,R, (1, -1, ~ Dk, (x, 1,)h,(x, 1)
+J::d‘td1’h(T)h(T’)J;”dTldTQRf'(TI -, +1-Th(x,T)h.(x,1,) (51.1)
where R, (1) is the autocorrelation of the random process f,(r). For white noise

with unity variance, R;(t) = &1). Using this in equation (51.1) and integrating
with respect to 1, yields

(x) = fo “dr hix,T)
+2f"d1:h(r)J“d1, h,(x, TR, T, )
+f”dtd‘c’h(1)h(t’) f "dt, k(6 Tk (x, T, +T—T) (51.2)

The cost functional ¥ is found by integrating equation (51.2) over some

length of the beam:
W= b,(0)+2 f “dTh(tb,(v)+ f “dtdT h(Dby(T-VIR(T) (53)

where - 5
b,(7) af dr, j dx h(x,T)h(x,T,—7)
0 xy

b,(7) Ej;“d*r,f zdx h(x,t)h (x,T,— 1)

by(1) af”dz, f dx h(x, 1)k, (x, T, 7) (54)
0 xy
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The Fourier transform of b,(t), b,(7), and b,(1) in equation (54) results in B (®),

B,(w), and B;(®), respectively. These transforms have previously been
determined in equation (40). Now use the definition of the inverse Fourier

transform defined by equation (21.2) to find ¥ in the frequency domain:

1 /® oe
\P-Eu_..de'(m)
w2 [Cael rdm, da,H(@)Bw)e’ ™™
o —ce 41t2 —a0

jloy +m,)<ej(¢n_,—mz)t’

+:d1dr'§lg J:dml deo,doH(0)B{0)H(®)e (55)
Using the identity"
&m)=%tf:d1ejm (55.1)
equation '(55) can be rewritten as
v= ZLn: Edm (B,(0) + 2B (@)H () + By(®) | H(@) [} (55.2)
From equation (53), notice that B,(®)H (») must be a real quantity, so
equation (55.2) can be rewritten as
Y= 511_: J:dm{B,(mj + B ()H () + By(0)H () + By(@) | H(®) [} (56)

From equation (37) it can be seen that the integrand of equation (56) is D(w),

go it can be written
\P—irdcocb(co) 57)
o) (

It is apparent from equation (36) that ©(w) is an even function, so equation

(57) can be written
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\P:lf"dmcb(co) (58)
ntJo
With equation (36), equation (58) can be expanded into
xy 0o
\P:J' dx%f do| H,(x,0) + H(@H (x,®) [ (59)
x (]

which, when compared to equation (50), gives
1 (= 2
o (x) =Ef do| H (x,0) +H(H_(x, o) | (60)
V]

To minimize ¥ in equation (58), ®(®w) must be independently minimized

at each value of w, because the function () is, by definition, positive for all
®. This independent minimization has already been accomplished in chapter
3. The unconstrained controller that gives the minimum vibration for
harmonic excitation is also the best unconstrained controller for random
excitation! After some thought, this fact is not so surprising. Without the
constraint of causality, the impulse response of the controller is defined for
—o St Seo, This has the effect of letting the controller "know" the input
excitation before it excites the beam. Thus the random input is not random
as seen by the controller, but deterministic. The infinite limits in equation
(47) illustrate this mathematically. In this light, it makes sense that the
optimum controller is the same for both random and periodic excitation.
Now that the unconstrained controller for random excitation is known,
the performance of the controller will be examined. It is interesting to note
that the special cases outlined in chapter 3 also hold for the case of random

excitation; perfect control is achieved when the exciting source and controller
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are collocated, and when minimizing the response at a single point on the
beam. Because these cases result in ®(w) = 0 for all values of ®, equation (58)

verifies that the same holds for controlling random excitation.

For more genei'al cases, the square root of equation (60) gives 6,(x), the

deviation of the beam displacement. It is plotted against x to show a
statistical beam displacement envelope in figures 19 and 20. In all plots, only
the first three modes are considered and the coefficient of damping ¢, for all
modes is taken as 1%. In figures 19 and 20, the vibration is being minimized
from 0<x <1 and from 3/4 <x < 1, respectively. The first mode dominates the
uncontrolled displacement envelope in figure 19, but this is hardly surprising
since the relative dominance of the first mode was seen in figure 2. These
results are similar to those realized before for harmonic excitation.
Compared to the global minimum, better control was achieved in the region
of minimization, at the cost of less control outside of the region of
minimization.

The vibration of the beam over the interval of minimization is
represented quantitatively by ¥ in equation (58). In figures 21 and 22; ¥ is
plotted versus the position x. of the controller. Perfect control is achieved for
collocation of source and controller. When minimizing over the length of the
beam in figure 21, the reduction in ¥ lessens as the controller position
coincides with nodes of the second and third modes. This is a result of the
requirement that each mode be minimized independently for global reduction
of ¥, and a mode cannot be controlled if it cannot be excited. The
requirement to minimize the modes independently can be verified by

substituting equation (46.3) in equation (58) to expand ¥ over the modes:
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Even though the controller cannot control a mode that it cannot excite
because of actuator location, it can still control the remaining modes, so
figure 21 shows a minimum of 15 dB in the reduction of the cost function Y.
This is quite different than what was observed in the case of harmonic
excitation, where some controller location always existed for which no control

was possible.

-20
— 40
m
©
e
L
>
80
-80 \v T T T T T T T T
0 0.2 0.4 06 0.8 1
Xe —— uncontrolled
controlled

Figure 21.  Effect of controller position x, on global cost function ‘¥,
x,=1/6,x,=0,x,=1

When minimizing over a subinterval of the beam, figure 22 illustrates
that locating the controller near a node can result in improved control.
Figure 24 illustrates this improved control by plotting the deviation of the
displacement after locating the controller at x. = .49. Because of the modal

coupling in a subinterval, the first and third modes are utilized to locally
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control the second mode.
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Figure 22. Effect of controller position x, on local cost function Y,
x, =16, x,=3/4, ;=1
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Figure 23. Effect of interval of minimization on both the local and
global value of cost function ¥ before and after control,
x,=1/6,x.=3/4, x,= 1
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The effect of the interval of minimization on the reduction in ¥ is seen in

figure 23. Greater control is possible as the interval of minimization is
decreased. The global value of ¥ is also reduced when controlling locally for

all values of the lower limit of minimization.
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Figure 24. Deviation of beam displacement, 5,(x) after optimal
placement of controller, x, = 1/6, x. = 49, x,=3/4, x, = |

The performance of the unconstrained controller has been examined,
and it establishes that excellent control is possible over a broad frequency
bandwidth for random noise excitation using only a single controller.
Regardless of the interval of minimization, a reduction in the global beam
vibration is always achieved. This differs from the results of chapter 3
where, for harmonic excitation, an increase was observed in global beam
vibration when minimizing locally for certain arrangements of exciting
frequency and controller location. The best location of the controller for

global control was shown, in general, to be as near the exciting force as
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possible, while avoiding node locations of the modes to be controlled because
each must be controlled independently. When controlling locally, however,
positioning the controller at a node location can result in improved control
because of the local interference between the modes.

The controller was revealed to have the same transfer function as the
controller used for harmonic excitation. This controller is not constrained by
causality which may limit its use depending on the application, so a
controller constrained by causality is also of interest. The discussion of the

constrained random controller is taken further in appendix A.
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Chapter 5

CONTROLLING TRANSIENT EXCITATION

fs(®

tet)
h(t) hl
X

xX=0 X=1

Figure 25. Controller configuration for transient excitation

In this chapter the force exciting the beam is assumed to be an impulse
function. Two different controllers are used to control the resulting transient
vibrations. The first controller uses one impufse delayed in time to minimize

‘the vibrations, whereas the second controller uses two impulses, both delayed
in time. The delays constrain the controller to be causal. The equatioﬁs will
be formulated for the two pulse controller, allowing the single pulse
equations to be‘found by letting the amplitude of the second controlling pulse
vanish.

The arrangement of the exciting and controlling forces is shown in figure
25. The primary souree of excitation is represented by f£,(r) and the secondary
force, used for controlling the beam, by f.(t). For a single pulse excitation and

two pulse control, these can be written

L(8) = £.00(z) (69)
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f.) =£.,0(t —1) +£,0(t —1,) >4 0 am
The linear relation between the exciting and controlling forces defines

the controller. In the time domain this linear relation is written as
f.(0 =f dth(’t)f,(t—t) (1)

where h(t) is the impulse response of the controller. Substituting equations

(69) and (70) into (71) gives

h(t)=hd( —t)+h,t — 1) (72)
where
=L
feo
fe
h,=— 73)
"= f ‘

The displacemeht of the beam due to a single exciting force is given by
equation (17) where A,(x,?) is defined as the response of the beam at position x

due to an impulse located at x,. By superposition, the total displacement is
y(x,t)= f dth, (D=1 +f dth (6, Df( =) (74)
where h_(x,?) is defined as the response of the beam at position x due to an

impulse located at x.. Using equations (69) and (70), this can be written,
y(x,0) = foh (X, 0) +f h (ot = 1) + o (x, — ) (75)

Normalize by the amplitude of the exciting impulse by defining

X, t
yalx, 1) = yx.0) (76)
fo
which allows equation (75) to be written
ye(x, 1) = h(x,0) +hh (x, 0 =1)+ hyh (x,t —t) (7
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In the case of a single pulse controller, #,=0 and equation (77) is left with

two degrees of freedom, A, and ¢,. Similarly, the two pulse controller has four
degrees of freedom. The four degrees of freedom will be reduced in the
following analysis to three by letting the time between the two pulses be fixed
at some positive constant o such that a=6—1,.

A measure of the transient vibrations resulting from the initial impulse
will be formed by squaring the displacement and integrating over all time.
Integrating this quantity over some length of the beam results in a cost
function to be minimized with respect to the impulse weights and delays of

the controller. Define
AEJ dxf dt y*(x,t) (78)
x 0

To find A, first square equation (77):
y2(x,8) =h2(x, ) + 2k, OB (et = 1) + 2h,h (x, t)h (x,t = 1)
+h2h2x, b — 1)+ 2h ok (x,t — )R (X, 1 =)+ RhXx,t=t) (79
Substituting equation (79) into (78) gives the cost function to be minimized
explicitly:
A=A, +2hA () +2hA1) + WAt 1)) + 2h BA(1, 1) + h2A (1, 1) (80)

where

A= f dx J‘“dthf(x,t)
X [+
At) = J- dx fwdt h(x,t)h (x,t -1,)
xy 0

AT, )= j dx I dth(x,t -t)h (x,t-T,) (8
xy [\
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It can easily be seen that the definitions in equations (81) are the same as
those already defined by equations (54) where A =b,(0), Ay (1) = by(T,), and
Ay(T;, %) = by(T, - T,) = by(0). Now equation (80) may be written as

A=b(0)+2h,b,t,)+ 2h,by(t,) + h,2 by(0) + 2h,h,b,(00) + h22 b,(0) (82)
To find the minimum value of the cost function A, calculate the partial

derivatives with respect to the unknowns hy, hy, and t,. Setting these
derivatives equal to zero yields stationary points, which are necessary

conditions for a minimum. The derivatives are

g;A =2h,b,(0) + 2h,b,(0x) + 2b,(z,) (83)
1

dA

™ =2h,b,(01) + 2h,b,(0) + 2b,(1,) (84)
dA , , ,

o =2hb',(t,) + 2hb"(t,) — 2, b’ () (85)

Setting equations (83) and (84) equal to zero yields the linear system
[ b,(0) ba(a)] {h} _ { —bz(ro} 36)
by(c) by(0)] (4 —by(t)

which can be solved to give

_ by(1,)b5(0) — by(1,)by ()

= 87
T B0 - b i

__5(t)by(0) = by(r)by(e)
2 b3(0) - b¥(ov)

(88)

After setting equation (85) equal to zero, equations (87) and (88) can be
used to write a single equation in ¢, whose roots are stationary points of A.
However, the equation is transcendental, with infinitely many roots.

Moreover, it is not clear which root results in the global minimization of the
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cost function A. An easy way around this problem is to substitute equations
(87) and (88) into equation (82) to give A as a function of f, and then to graph
the cost function so that the global minimum may be identified visually. This
is done in figures 26 and 27.

In figure 26, the cost function A has been minimized over the entire

length of the beam, or globally. Both the one and two pulse controller achieve
their minimum values at nonzero delay times. The minimum for the one
pulse controller is reached at t, =T,/2 = 318, where T, is the period of the first
eigenvalue, or eigenfrequency, of the beam, equal to 2/ = .637. The delay
times at which no control is possible for a single pulse controller correspond
to the instants at which the energy in the first mode is all potential. Any
attempt to control the beam with a single pulse at this instant only increases
the energy in the first mode. Itis possible to control the higher order modes
at these instants, but spillover into the dominant first mode (see figure 2)
prevents any reduction of the cost function.

To better illustrate this mechanism, consider a single degree of freedom
spring mass system in an excited state. Asthe mass reaches the system
equilibrium position its energy is purely kinetic and an impulse can be used
to completely stop the subsequent motion. This is in contrast to the time at
which the maximum displacement is reached and the energy of the system is
purely potential. At this time, the best controlling pulse would be none at all,
because striking the mass with an impulse can only serve to increase the
energy in the system. The situation is more complicated for multiple degrees

of freedom but the mechanisms are the same.

48



/\ (t1) @B

T

-32 T T T T T T T T
0 0.2 0.4 0.8 0.8 1

= uncontrolled t, 2 pulse, =T/4
1 pulse T 2pulse, %=T/100

Figure 26. Cost function A vs. delay time 1, of initial control impulse
for global control, x, = 1/6, x. =3/4, x, = 0,x=1
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Figure 27. Cost function A vs. delay time 1, of initial control impulse
for local control, x, = 1/6, x. =3/4, x, =3/4, x, =1
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The single degree of freedom example in the last paragraph explains
why the fundamental period of the oscillating cost functions in figures 26 and
97 are half the period of the first beam mode, but there are several other
trends that can also be explained. One of these is the upward trend of the
local minima for the cost functions. Recall that the plotted cost function is
integrated over all time (see eqn. 78), but it is an impulse that is being
controlled, so the major contribution to the integral comes from the time
interval immediately following the exciting impulse. Thus, to minimize the
cost function it is, in general, better not to delay control too long, because
after the exciting impulse has decayed away, there is nothing left to control
and the oscillating cost functions will have converged to the uncontrolled
level.

Again looking at the single pulse control in figure 26, it is seen that the
global minimum for A occurs at a delayed value for r, rather than a zero
delay, and the fourth minimum results in better control than the third. It
seems that waiting later can result in better control of the beam. This is true
because of the interactions of the beanﬁ modes. The best delay at which to
control is the delay at which the spillover from controlling the first mode
helps control other modes as well. This phenomenon appears to be a strong
function of the controller location as seen in figure 28, in which the optimal
delay time r, for the global cost function is plotted against the controller
location. The changes in optimal delay times are discrete jumps that occur
when the controller location is such that the controller spillover couples with

the beam modes in a way to make an alternate delay time more desirable.
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Figure 28.  Effect of controller position on the optimal delay time for
the controller, x, = 1/6, x, = 0, ,=1,a=T/4

In contrast to the single pulse controller, the two pulse controller in
figures 26 and 27 always results in some reduction of the cost function. Tlﬁs
results from the controller being able to offset the spillover into the first mode
with the second pulse while controlling higher order modes. The amount of
control possible is highly dependent on the time o between the two pulses.
For increasingly small values of a, the cost function ceases to show any
noticeable changes after values smaller than o =T7/100, but better control is
possible for greater choices of o. The increased complexity of the cost
function for the two pulse controller will be discussed later.

It is worthwhile to comment on the similarity of figures 26 and 27 since
some may be surprised that a global reduction would yield very nearly
identical values of ¢, to minimize the cost function A. This is a result of the

transient nature of the excitation. For transient excitation, no steady
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opposition to a local disturbance can be developed. For this reason, the global
and local minimizations yield very nearly the same results, as will be shown
in later plots.

Now it is of interest to note the controller weights 4, and 4, that yield the

control shown in figures 26 and 27. Figures 29 and 31 show these weights
corresponding to the global control in figure 26, and figures 30 and 32 show
those for the local control in figure 27. All of the weights oscillate with the
period of the first beam mode.

For a.=T /4 in figures 29 and 30, the first weight of the two pulse

controller is essentially the same as that of the single pulse controller; the
second weight is the same also except that it is delayed by the time lag o
between the control pulses. The peak values correspond to the optimal delay
times in figures 26 and 27 and the zero crossings coincide with the delay
times at which no control is possible.

The amplitude A, of the single pulse controller at 7, =0 can be largely

attributed to the effect of the excitation source and controller locations on the
first mode. To better see this, assume the beam is represented by its first
mode only. Minimizing the cost function A in equation (78) with respect to
h,(t, = 0) results in k, =sin(wx,)/ sin(rx,). For the locations of source and
controller in figure 29, h, =sin(/6)/ sin(31/4) =12 =.707. The actual value of
.66 read from figure 29 is lower because there is more than one mode to
control and stopping the first mode completely by letting h, = —172 would
result in spillover into the remaining modes, resulting in less than optimum

control.
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In view of the slight difference between figures 26 and 27, it is no
surprise that figure 30 is very similar to figure 29. The increased importance
of the higher order modes in figure 30 accounts for the increased distortion of
the oscillating values of the weights.

Now look at the case in which the time o between the controlling pulses

gets small. The weights become large and most often opposite in sign, as
shown in figures 31 and 32 for a=T,/100. The "dipole"” nature of the pulses
allows control of higher order modes while limiting spillover in the first mode.
The peak values in these figures indicate the delays at which the single pulse
controller could not achieve any control. This two pulse controller does
achieve some control (less than 3 dB globally) at these peaks as seen in
figures 26 and 27, but larger control pulse weights are needed. The
magnitudes of these pulse weights will be associated with the effort of the
controller and are given in figures 31 and 32. The amplitudes are over ten
times the amplitudes for more widely spaced controlling pulses that not only
‘need much less effort but result in better control as well.

The best control results near the zero crossings of the weights in figures
31 and 32. Here the two weights sum to that of the single controller as given
in figures 29 and 30. This agrees with the results seen in figures 26 and 27,
where all configurations of one and two pulse controllers gave identical
performance at the value ¢, =7,/2. Thus, in return for somewhat increased
peﬁorﬁance over a siggle controller pulse, the two pulse controller requires
significantly more effort if a « 1.

Figure 26 showed a large change in the optimum delay time ¢, of the two

pulse controller when the time o between the control pulses was changed. To
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better exhibit this relationship, a contour plot of the reduction in the cost
function A is shown in figures 33 and 34 with t, and o as independent
variables. For a=0, the determinant of the linear system in equation (86) is
zero because 1, = t,, 50 results for the single-pulse controller are plotted along
the ordinate for this degenerate case.

There is more to be seen in figures 33 and 34 than that they are complex
and contain many local minima for A. Both figures contain strong contour
lines that can be explained with the help of figures 26 and 27. The diagonal
contours are centered about the two lines, h+a=T/2 and r, + o= 3T,/2, which
correspond either to the first or second pulse acting at the minima seen in
figures 26 and 27 for the single pulse controller. The strong vertical contours
are located about the lines r, = 7,/2 and t; =3T,/2 which again correspond to the
minima seen in figures 26 and 27. Along these contours, the second pulse has
virtually no impact at all, indicating that its amplitude must be near zero.
The global minima in figures 33 and 34 occur near the origin and show a |
reduction in the cost function A of more than 16 dB both globally and locally.
The minima of A are at (t, ) = (.06,.12), and (¢,,&0) = (.07,.11) in ﬁgurés 33 and.
34, respectively. The location of the minimum is caused by an interaction
between the modes. Note the general spreading of the contour lines as t, and
o increase. This can be understood by recalling again that the cost function A
is obtained by integrating over time, so that, in general, the longer the
controller delays the controlling pulses, the less reduction 1S possible.

Recall that the contours in figures 33 and 34 are functions of the
controller configuration. To study the effect of controller location and
interval of minimization, it would be necessary to regenerate and search

contours such as figures 33 and 34, for each individual location of the
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controller and interval of minimization, so that the values of ¢, and o that
result in global reduction of the cost function A would be found. Because this
is time consuming, o is held fixed in figures 35-39, and the optimum ¢, sought
along the line o = 0,y One should keep in mind though, that the
quantitative control is also a function of the time o between control pulses.
Figures 35 and 36 show how the location of the controller affects the
quantitative control. Just as in the case of controlling a harmonic exciting
source in chapter 3, collocation of source and controller results in perfect
control. It can be seen from figures 35 and 36 that substantial control is
possible for any location of the controller in the case of global minimization of
A, but, in general, it is best to move the controller as close as possible to the
exciting source. Again a very subtle difference is seen between the shape of
the global and local curves. This is seen throughout the plots in this chapter
and reinforces the earlier statement that minimizing A locally in the case of
transient excitation also results in very nearly a global minimum as well.

Now that the effect of controller location on A has been illustrated, it is

of interest to see at what effort the control was gained. The effort can be seen
by examining the weights h, and &, of the control pulses. The weights
corresponding to the global control in figure 35 are shown in figure 37 and
the weights corresponding to the local control in figure 36 are shown in figure
38. When the controller location nears the ends of the beam, the weights get
large because poor qual coupling makes it increasingly difficult to excite the
beam modes. The sudden changes in magnitude of the weights is due to a
change in the optimum delay time ¢, for the initial controlling pulse. These

jumps were seen earlier in figure 28. As the controller position is changed,
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the optimum value for ¢, will change in discrete jumps. Correspondingly, the
weight of the controller pulses will also change in discrete jumps. The sign
change of the single pulse controller results from the change in sign of the
modal eigenfunctions as the controller location changes. The second mode
dominates this change in sign, which causes the jump to be near x =1/2 which
is the location of the sign change for the second modeshape. When either of
the two weights A, or h, equals zero, there is no advantage to using a two
pulse controller. These regions match the regions in figures 35 and 36 where
no further reduction in the cost function A was possible with the two pulse
controller.

The consequence of changing the controller location x. was seen in

figures 35 and 36. The location x, has a major impact on the amount of
control possible. Figﬁre 39 shows that changing the interval of minimization
does not have any dramatic results on the amount of control possible.

The effect of changing the controller location, interval of minimization,
delay time of the controlling pulées, and the time between the control pulses
have been observed. The performance was measured by the reduction in the
cost function A. Recall that A is integrated over time and the interval of
minimization. To better understand physically how the cost function is being

reduced, define a spatial energy density function such that
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*1
A=f dxE (x) (89)

where -
E(x)= f dt y*(x,1) (90)
0
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Figure 39. Effect of interval of minimization on cost function A,
X, =1/6,x.=3/4, x,=1, a=T,/4

The function E ,(x) shows where on the beam the reduction in the cost

function A is taking place. It is plotted in figure 40 for both global and local
control by the one and two pulse controllers. The delay times ¢, and a in
these plots are the optimal values as selected from figures 33 and 34.

The plots for the single pulse controller overlay one another and are
indistinguishable. Th;a interval of minimization has virtually no effect on the
control possible by a single pulse. Looking back at figure 39 confirms that,

regardless of the interval of minimization, the same global control is achieved
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Figure 40.  Spatial distribution of cost function A before and after
control, x, = 1/6, x, = 3/4, local{x, =3/4, x,= 1,1
pulse(t, = T,/2), 2 pulse(r, = .07, a=.11)}, global{x, =0, x, =1,
1 pulse(r, = T,/2), 2 pulse(r, = .06, a=.12)}

with a single pulse controller. This is not true of the two pulse controller. It
gives better control in the interval of minimization at the cost of giving up

some control outside the interval.

From figure 40 one gains a feel for the location on the beam at which the
cost function is being reduced. A more physical demonstration of how the two
pulse controller achieves better control than the single pulse controller is
evident in figures 41 and 42. These show time histories of the beam
displacement y(x,¢) at a single position on the beam before and after control.
The two pulse controller again uses the optimal values for ¢, and o as selected

from figures 33 and 34.
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Figure 41 gives the displacement before and after a single pulse
controller is used. The before and after control plots are identical until the
controller strikes at delay time 1. The first mode is virtually eliminated from
the time response after application of the controller. Notice the delay of the
controller corresponds to ¢, = T,/2 which is a time of zero displacement of the
first order mode. At this instant the energy in the first mode is entirely
kinetic which, as mentioned in the discussion of figures 26 and 27, marks the
best time to strike the beam with a controlling impulse since the first mode
dominates the displacement.

The two pulse controller in figure 42 strikes sooner than the single pulse
controller in figure 41 in an attempt to reduce the displacement of the first
beam mode in its initial half cycle. This is accomplished, but at the cost of
slightly increased oscillations following the control pulses as compared to the
single pulse controller.

In summary, it is always possible to control the transient vibration of
the beam with both one and two 'impu}ses. The two impulse controller results
in increased performance, as seen in figure 40, but at the cost of increased
effort in the determination of the delay time and weight of the second pulse.
To make the weight of the second pulse simple to determine, the time o
between the pulses can be fixed as it was for most figures in this chapter but
this offers only a slight improvement over the single pulse controller. Thus,
for the two pulse controller to offer significant improvement, as was the case
in figure 40, it ig neceésary to find the optimal Adelays for the first and second
pulse independently. This is a point of difficulty for this method. Roots of a
transcendental equation yield infinitely many choices for the delays ¢, and o
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that result in stationary points of the cost function A, but there is no clear
method for quickly determining the values of t, and a that result in the global

minimum.
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Chapter 6

SUMMARY

A controller to optimally reduce the vibration of a finite beam has been
found for each of the three cases of excitation considered. For each controller,
the performance was illustrated for a variety of configurations and the
important results will now be summarized.

For harmonic excitation the optimal controller is seen to have two
degrees of freedom, the amplitude of the controlling force and its phase
relative to the exciting force. When minimizing the vibration globally,
however, the only degree of freedom of the controller is the amplitude of the
controlling force, because the orthogonality of the modes requires that each
mode be minimized independently. Perfect control is possible at any single
point on the beam, but when minimizing the vibration over some length of
the beam, the only way to achieve perfect control is to collocate the excitation
source and the control source. For separate locations, the best control exists
when the excitation frequency is near resonance of one of the modes.
Between the modal resonan;:es, the quantitative control diminishes, until no
control is possible at a discrete frequency which is a function of excitation
location, controller location, and the interval of minimization. This was true
when minimizing both locally and globally, but the frequency band in which
the control was diminished, was much broader when minimizing globally.
This bandwidth in which little control is achieved should not be a foremost
concern though, because it always occurs at frequencies where the response

of the beam is at a minimum and it is not as important to control the

67



vibration. The location of the controller should generally be as close as
possible to the excitation source. For global control, avoid locating the
controller at a node of a mode to be controlled; when controlling locally,
locating the controller at a node of a contributing mode can be advantageous
because controller spillover into that mode is eliminated.

For random excitation, the ideal controller was found to be the same
controller that best minimizes the vibrations resulting from harmonic
excitation. The performance of the random controller was then shown to be a
frequency average of the performance of the harmonic controller, resulting in
excellent control of random excitation using only a single controller. Perfect
control is possible at any single point on the beam, but when minimizing the
vibration over some length of the beam, the only way to achieve perfect
control is to collocate the excitation source and the control source. The best
location of the controller for global control was shown, in general, to be as
near the exciting force as possible, while avoiding node locations of the modes
to be controlled, because each mode must be controlled independently. When
controlling locally, however, positioning the controller at a node location can
result in improved control because of the coupling between the modes.
Regardless of the interval of minimization, a reduction in the global beam
vibration is always achieved. More control is gained as the interval of
minimization is reduced, but not at the cost of increasing the global energy.

For transient excitation, two different controllers were found and
compared. The first c;)ntroller used a single impulse delayed in time to
minimize the vibrations, whereas the second controller used two impulses,
both delayed in time. The delays constrain the controller to be causal. If the

time between successive pulses was fixed for the two pulse controller, it
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resulted in virtually no improvement over the single pulse controller. The
transient nature of the excitation prevents the controller from being able to
zero the vibrations at a single point on the beam as was possible for
steady-state excitations. Perfect control is achieved if the excitation force and
controlling force are collocated. Changing the interval of minimization had
no effect on the single pulse controller, and only a slight effect on the two
pulse controller; Both controllers exhibited excellent control over all intervals
of minimization. The best location for the controller was again as close as
possible to the excitation source.

The highlights on controlling beam vibrations resulting from three types
of excitation have been presented. The study was by no means exhaustive,
and there are several interesting topics that could be examined further as
future research.

In the case of both harmonic and random excitation, the controller was
found to be have the same acausal transfer fupction. To implement an

-acausal controller, future values of the excitation source are required. This is
not a problem in the casé of harmonic excitation, since all future values are
exactly known, but exact future values of a random excitation are generally
not available. This requires the practical constraint of causality to be
imposed on the controller used in the case of random excitation. It would be
interesting to find the transfer function of the optimal controller constrained
by caushlity and to compare its performance to the acausal controller in
chapter 4 to see what 'is lost in performance as a result of the constraint.

It would also be useful to extend the theory of controlling a single
transient pulse given in chapter 5 to control a sequence of random pulses.

The controller need not be limited to only one or two control pulses. If many
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pulses are used and the time between the control pulses is fixed, this problem
is exactly a discretized version of that of finding the optimal controller
constrained by causality for random excitation mentioned previously.

Also it would be desirable to implement and verify the controllers found
in this work digitally in an experimental arrangement. It is not necessary,
though, to use the controllers found in this work. Adaptive controllers could
be used to control the vibrations, and their performance compared with the

theoretical limits presented in this thesis.
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Appendix A

THOUGHTS ON CAUSAL CONTROL OF A
STATIONARY RANDOM PROCESS

In chapter 4, an optimal controller was found to control white noise
excitation. The disadvantage of the controller was that it was acausal and
required future values of the noise excitation in order to be implemented. In
some applications, a good estimate of future excitation values may exist, but
for a completely general application, the controller for random excitation
must be constrained to using only past values of the random noise excitation.
Unfortunately, the constraint of causality makes the ideal controller
considerably more difficult to find. The calculus of variations is employed
here to find an integral equation that the constrained controller must satisfy.
Both the analytical and numerical solution of this equation are then

-discussed.

Imposition of the coﬁstraint of causality is possible in both the frequency
and time domains. In the frequency domain, causality causes the real and
imaginary part of the transfer function to be dependent. If the real part is
known, the imaginary part can be found by the relation®

o((>, , R
1((0)=Ef d&)ﬁi

(Al)
One way to satisfy the constraint of causality is to let H(w) =R(w) +j/(®w) in

equation (56), where R(®) and /(w) are the real and imaginary part of H(w),
respectively. Now use the integral relation in equation (A1) to get the cost

functional ¥ in terms of only one independent function. This results in
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1 os
¥= Lde,(m)

o? -

R(®) ]
®? - o’

| O . jo (~ , R(w)
+£J;d0)32((o)[R(u))+nJ;dw 2 ]

1 (= [ jo(=.
+Ef_~d 0 B,(w) _R((o) T f_.,d o

1 J‘-' [, mzf" s 2w R@R(@") ]
+— | doB(W)|R(w+—| do'dw

21: - 3( )_ ( ) nz _“ (md_mZ)(u)lfz_m2)
which is a very complicated integral equation.

In the time domain, causality is more simply enforced by requiring 4(r),

the impulse response of the controller, to be zero for t <0. This affects the

limits in equation (53) such that
¥ = b,(0) + ZJ“d‘ch(r)bz(t) +f“drd‘t’h(1:)b,(1: —?)h(7) (A2)
0 0

Now the problem is in the time domain rather than the frequency domain.
Unfortunately, the quantity to minimize is still an integral equation, but not
as complicated as was the frequency domain equation.

An impulse response function A(t) is sought that will minimize ¥, which

i8 by definition, always a positive quantity. This is a problem in the calculus
of variations™. If a minimum exists, a necessary condition is that it be at a
stationary point of ¥. Finding a stationary point is not sufficient however, to
say that the point represents a minimum or maximum, but fortunately in
many physically motivated problems, it will be obvious. If only one
stationary point exists' for ¥, then it must be the minimum since a controller
could always be chosen to make ¥ larger. To find a stationary point, first

calculate the variation of ¥ in equation (A2) with respect to the controller
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h(T):
sW=2 J:dt b(1)5.h + J::dt A7 {b(t-V)h(T)S . +b(T—T)h(DSH}  (A3)
and rearrange to give
¥ =2 Jo-dt b(0)5) + fo “dtd {by(t— 1)+ b(T - D} A(T)S 4 (Ad)

Looking back at equation (54), b,(1) is

by(T) = f”dt,f dxh (x,t)h (x,1,— 1) (A5)

Now use 1, =1, — T to change the variable of integration resulting in

by(1) = rdtzf dx h(x, 1, + Ok (x, 1) (A6)

which, when compared with equation (A5), clearly reveals that b,(t) = b,(-1).

Because b,(7) is an even function, equation (A4) can be rewritten as
5 = 2f”d1{b,(r) + f “dv byt —‘c’)h(t’)} S.4 (A7)
o0 [}

A stationary point is defined by 8% =0. Since 5.4 is a function that can

be chosen arbitrarily to prevent the integration from being zero, the
integrand itself must everywhere be identically zero. This results in the

Euler, or governing, equation:
bz(t)+J‘“d1'b3(‘r—‘r')h(‘t')=O (A8)
0

This particular integral equation is of a very common form known as the

Wiener-Hopf integral equation. If the controller were not restricted to r > 0, it
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could be solved by utilizing the convolution theorem of the Fourier transform
which gives the same result as already found for the unconstrained random
controller in chapter 4.

It may seem that the properties of the one-sided Laplace transform could

be utilized to give

H(s)=- S (A9)

but this is not possible since the convolution theorem is defined only for
functions that are zero for r < 0; b,(1) is even, so the Laplace transform cannot
be used. Of course the integral in equation (A8) could be separated into two
one-sided integrals but then A(7) is coupled with limits and an algebraic
solution such as equation (A9) is not possible.

An analytical method for solving equation (A8), which requires the
Fourier transform of the kernel b,(t) to be factored into two functions that are
analytic in the left and right half-planes, respectively, is presented by
Krein®®. Factoring the product of two summations over the modes would be a
very tedious process, but it may be possible to utilize a computer program
that does symbolic manipulation, such as Macsyma?®*, to aid in this task.

A straightforward appfoach to obtain a numerical solution is to
discretize equation (A8) and solve the resulting simultaneous linear system of
equations for discrete values of the desired controller function. Discretizing

equation (A8) yields

) N
bkA)+A Y b(kA-nAh(nA)=0  k=0,1,..,N (A10)
n=0
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The functions b,(t) and b,(t) are presented in closed form in appendix B. The

solution to equation (A10) yields the impulse response of the controller.
Substituting this into a discrete version of equation (A2) gives the

approximate performance of the controller:

Wb 0)+2A T KA, (A +A* T 3 h(nA)b,(nA— kA (kA) (All)
n=0

Am0k=0

Unfortunately, the solution of the discrete system created questions rather
than answers. The discrete values of the impulse response k() had large
oscillations at r =0 and r = NA. The oscillations became more tightly spaced
and stronger as the stepsize A was decreased. Substituting the result into
equation (A11) indicated a large reduction in the beam vibration. To check
the reduction of displacement in the time domain, the beam equation was
discretized and control simulated. After control, the amplitude of the
displacement increased! If the oscillations were removed from the ends of the
discrete impulse response, a reduction in displacement was observed. This
would seem to indicate that the oscillations were not part of the actual
sclution, but if they were eliminated, then other problems occurred. As an
example, minimizing the beam vibration globally did not reduce the global
cost function as much as minimizing locally did. This makes absolutely no
sense at all. This may be the result of the determinant of the system matrix
rapidly approaching zero as N increases, although no thorough explanation
could be found.

The problem of ﬁ;lding the optimal causal controller has been briefly
discussed. This is a problem which contains many subtleties, and further

research is necessary before these subtleties can be fully understood.
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Appendix B
RELEVANT INTEGRALS

The closed form solution of several integrals is needed for plotting the

solutions found in the text. The first is
Sm(t)s 1) = f dth,(t—t)h,(t1-1,) n2t20
0

where 1 wtr
h()=——e "™ sine, .t u,(r)

d,n
This can be solved to give
St ) = b, {cosw, ,t,cosw, .6,X,.
—cosw, f sinw, .t,Y,
—-sinw, f,cosw, Y,

+ Sin (Dd,ntl Si‘r.l md,mt2znm}

"where L (=1
. b"m = l e ncn( 2 l)
wd.nwd,m
and X (md,n + md,m) Sin((od,n + wd.m)tz - ((Dngn + (’)m Qn) COS((DJ'" + (od.m)rZ
o 2{(0.5, + 0,8.)" + (0, + 0, )}

((od,n - (‘od,m) Sin(wd,u - (od.m)tZ - ((Dnz;n + ('OMCM) cos((od,n - md,m)’z
2{((1),,§,, + (D,,,C_,,,)z + (wd,n - u)d,m)z}

_ (ﬁ)nt.n + (omgn) Sin(md,n - md,m)t2 + ((Dd.n - (Dd.m) COS((!)J.,, - (Dd,m)r2
" T 2@+ 0uL) (04~ ;)

+(mnC" +,5,) sin(@, , + 0, )0 = (0, , +®, ) cos(w, , + W, ),
2{(0,5, + 0,,5,)° + (o, , + @, )%
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7 = _(wd.n -y ,,) SIN(®, , — O ) — (0,8, +©,5,) cos(W,,, — Wy )1

: - 2{(,8, + mmCm)2 +(w,,— (Dd.m)2}

(@ + 00 ) SINO,  + @y )t = (®,8, + ©,5n) COS(Q 0 + Oy )1y
2{((Dn§n + (')mt.lm)2 + (md.n + md.m)z}

Another integral needed throughout the text is
Crli)= [ dx 0,08,

where $,(x) =sinnmx n=123,...

The solution is

sin(n —m)mx, —sin(n —m)mx, sin(n +m)mx, - sin(n +m )TEX,
2n(n —m) - 2m(n +m)

Com(X1 %) =

1 1. .
=§(x2—x,?—m(sm2n1r.x2—sm2nnx,) n=m
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